Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The concept of the hologenome, an epigenetic phenomenon, challenges aspects of the modern evolutionary synthesis.

Identifieur interne : 000055 ( Main/Exploration ); précédent : 000054; suivant : 000056

The concept of the hologenome, an epigenetic phenomenon, challenges aspects of the modern evolutionary synthesis.

Auteurs : Adena Collens [États-Unis] ; Emma Kelley [États-Unis] ; Laura A. Katz [États-Unis]

Source :

RBID : pubmed:31709760

Descripteurs français

English descriptors

Abstract

John Tyler Bonner's call to re-evaluate evolutionary theory in light of major transitions in life on Earth (e.g., from the first origins of microbial life to the evolution of sex, and the origins of multicellularity) resonate with recent discoveries on epigenetics and the concept of the hologenome. Current studies of genome evolution often mistakenly focus only on the inheritance of DNA between parent and offspring. These are in line with the widely accepted Neo-Darwinian framework that pairs Mendelian genetics with an emphasis on natural selection as explanations for the evolution of biodiversity on Earth. Increasing evidence for widespread symbioses complicates this narrative, as is seen in Scott Gilbert's discussion of the concept of the holobiont in this series: Organisms across the tree of life coexist with substantial influence on one another through endosymbiosis, symbioses, and host-associated microbiomes. The holobiont theory, coupled with observations from molecular studies, also requires us to understand genomes in a new way-by considering the interactions underlain by the genome of a host plus its associated microbes, a conglomerate entity referred to as the hologenome. We argue that the complex patterns of inheritance of these genomes coupled with the influence of symbionts on host gene expression make the concept of the hologenome an epigenetic phenomenon. We further argue that the aspects of the hologenome challenge of the modern evolutionary synthesis, which requires updating to remain consistent with Darwin's intent of providing natural laws that underlie the evolution of life on Earth.

DOI: 10.1002/jez.b.22915
PubMed: 31709760
PubMed Central: PMC6904923


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The concept of the hologenome, an epigenetic phenomenon, challenges aspects of the modern evolutionary synthesis.</title>
<author>
<name sortKey="Collens, Adena" sort="Collens, Adena" uniqKey="Collens A" first="Adena" last="Collens">Adena Collens</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Smith College, Northampton, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Smith College, Northampton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kelley, Emma" sort="Kelley, Emma" uniqKey="Kelley E" first="Emma" last="Kelley">Emma Kelley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Smith College, Northampton, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Smith College, Northampton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Katz, Laura A" sort="Katz, Laura A" uniqKey="Katz L" first="Laura A" last="Katz">Laura A. Katz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Smith College, Northampton, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Smith College, Northampton</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31709760</idno>
<idno type="pmid">31709760</idno>
<idno type="doi">10.1002/jez.b.22915</idno>
<idno type="pmc">PMC6904923</idno>
<idno type="wicri:Area/Main/Corpus">000051</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000051</idno>
<idno type="wicri:Area/Main/Curation">000051</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000051</idno>
<idno type="wicri:Area/Main/Exploration">000051</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The concept of the hologenome, an epigenetic phenomenon, challenges aspects of the modern evolutionary synthesis.</title>
<author>
<name sortKey="Collens, Adena" sort="Collens, Adena" uniqKey="Collens A" first="Adena" last="Collens">Adena Collens</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Smith College, Northampton, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Smith College, Northampton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kelley, Emma" sort="Kelley, Emma" uniqKey="Kelley E" first="Emma" last="Kelley">Emma Kelley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Smith College, Northampton, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Smith College, Northampton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Katz, Laura A" sort="Katz, Laura A" uniqKey="Katz L" first="Laura A" last="Katz">Laura A. Katz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Smith College, Northampton, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biological Sciences, Smith College, Northampton</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental zoology. Part B, Molecular and developmental evolution</title>
<idno type="eISSN">1552-5015</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Biological (MeSH)</term>
<term>Biological Evolution (MeSH)</term>
<term>Epigenesis, Genetic (MeSH)</term>
<term>Genome (MeSH)</term>
<term>Microbiota (MeSH)</term>
<term>Symbiosis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation biologique (MeSH)</term>
<term>Génome (MeSH)</term>
<term>Microbiote (MeSH)</term>
<term>Symbiose (génétique)</term>
<term>Épigenèse génétique (MeSH)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Symbiose</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Biological</term>
<term>Biological Evolution</term>
<term>Epigenesis, Genetic</term>
<term>Genome</term>
<term>Microbiota</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation biologique</term>
<term>Génome</term>
<term>Microbiote</term>
<term>Épigenèse génétique</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">John Tyler Bonner's call to re-evaluate evolutionary theory in light of major transitions in life on Earth (e.g., from the first origins of microbial life to the evolution of sex, and the origins of multicellularity) resonate with recent discoveries on epigenetics and the concept of the hologenome. Current studies of genome evolution often mistakenly focus only on the inheritance of DNA between parent and offspring. These are in line with the widely accepted Neo-Darwinian framework that pairs Mendelian genetics with an emphasis on natural selection as explanations for the evolution of biodiversity on Earth. Increasing evidence for widespread symbioses complicates this narrative, as is seen in Scott Gilbert's discussion of the concept of the holobiont in this series: Organisms across the tree of life coexist with substantial influence on one another through endosymbiosis, symbioses, and host-associated microbiomes. The holobiont theory, coupled with observations from molecular studies, also requires us to understand genomes in a new way-by considering the interactions underlain by the genome of a host plus its associated microbes, a conglomerate entity referred to as the hologenome. We argue that the complex patterns of inheritance of these genomes coupled with the influence of symbionts on host gene expression make the concept of the hologenome an epigenetic phenomenon. We further argue that the aspects of the hologenome challenge of the modern evolutionary synthesis, which requires updating to remain consistent with Darwin's intent of providing natural laws that underlie the evolution of life on Earth.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31709760</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1552-5015</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>332</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2019</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental zoology. Part B, Molecular and developmental evolution</Title>
<ISOAbbreviation>J Exp Zool B Mol Dev Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>The concept of the hologenome, an epigenetic phenomenon, challenges aspects of the modern evolutionary synthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>349-355</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jez.b.22915</ELocationID>
<Abstract>
<AbstractText>John Tyler Bonner's call to re-evaluate evolutionary theory in light of major transitions in life on Earth (e.g., from the first origins of microbial life to the evolution of sex, and the origins of multicellularity) resonate with recent discoveries on epigenetics and the concept of the hologenome. Current studies of genome evolution often mistakenly focus only on the inheritance of DNA between parent and offspring. These are in line with the widely accepted Neo-Darwinian framework that pairs Mendelian genetics with an emphasis on natural selection as explanations for the evolution of biodiversity on Earth. Increasing evidence for widespread symbioses complicates this narrative, as is seen in Scott Gilbert's discussion of the concept of the holobiont in this series: Organisms across the tree of life coexist with substantial influence on one another through endosymbiosis, symbioses, and host-associated microbiomes. The holobiont theory, coupled with observations from molecular studies, also requires us to understand genomes in a new way-by considering the interactions underlain by the genome of a host plus its associated microbes, a conglomerate entity referred to as the hologenome. We argue that the complex patterns of inheritance of these genomes coupled with the influence of symbionts on host gene expression make the concept of the hologenome an epigenetic phenomenon. We further argue that the aspects of the hologenome challenge of the modern evolutionary synthesis, which requires updating to remain consistent with Darwin's intent of providing natural laws that underlie the evolution of life on Earth.</AbstractText>
<CopyrightInformation>© 2019 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Collens</LastName>
<ForeName>Adena</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Smith College, Northampton, Massachusetts.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kelley</LastName>
<ForeName>Emma</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Smith College, Northampton, Massachusetts.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Katz</LastName>
<ForeName>Laura A</ForeName>
<Initials>LA</Initials>
<Identifier Source="ORCID">0000-0002-9138-4702</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Smith College, Northampton, Massachusetts.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R15 GM113177</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R15 HG010409</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Exp Zool B Mol Dev Evol</MedlineTA>
<NlmUniqueID>101168228</NlmUniqueID>
<ISSNLinking>1552-5007</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000220" MajorTopicYN="N">Adaptation, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044127" MajorTopicYN="Y">Epigenesis, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016678" MajorTopicYN="N">Genome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="N">Microbiota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">epigenomics</Keyword>
<Keyword MajorTopicYN="Y">evolutionary theory</Keyword>
<Keyword MajorTopicYN="Y">holobiont</Keyword>
<Keyword MajorTopicYN="Y">microbiome</Keyword>
<Keyword MajorTopicYN="Y">symbiosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2020</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31709760</ArticleId>
<ArticleId IdType="doi">10.1002/jez.b.22915</ArticleId>
<ArticleId IdType="pmc">PMC6904923</ArticleId>
<ArticleId IdType="mid">NIHMS1056251</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Epigenomics. 2016 Sep;8(9):1259-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27587189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protist. 2011 Jul;162(3):394-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21130034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Jun 17;12(7):475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21681209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2013;5(9):1675-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23918810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Dec 16;5(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Feb 27;365(1540):671-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20083641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2014 Oct 29;4:147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25401092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2004 Jun;68(2):280-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15187185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2018 May 10;8(11):5242-5253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29938049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1999 Feb;14(2):49-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10234251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Oct 20;10(4):359-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22018236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Brain Behav. 2014 Jan;13(1):69-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24286462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Zool B Mol Dev Evol. 2019 Dec;332(8):301-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31209997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2012 Oct 12;2:127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23091803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Apr 20;8:721</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28473829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Sep 15;16:191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26374288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Zool B Mol Dev Evol. 2019 Dec;332(8):307-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31565856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jun 20;153(7):1567-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23791183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Aug 11;126(3):453-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16901780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2002 Feb 1;242(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11795936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2004 Apr;17(2):413-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15084508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2008 Dec;36(Pt 6):1224-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19021530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2018 Feb 1;10(2):646-656</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29390087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2015 Dec 04;13(12):e1002311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26636661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2007 May;5(5):355-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17384666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Parasitol. 2018 May;34(5):404-419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29422444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2008 Aug;32(5):723-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18549407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2019 May 15;15(5):e1008166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31091231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):213-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17190825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Dec 1;187(11):5879-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22068236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2011;45:119-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21838550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2017 Jul 5;26(1):110-130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28625867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Sep 27;8:1896</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29021788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10257-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24982177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2015 Aug 18;13(8):e1002226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Hyg Environ Health. 2010 Jun;213(3):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20418158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Mar 31;7(2):e01395</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27034283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Mar 31;7(2):e02099</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27034285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zoology (Jena). 2013 Oct;116(5):260-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24035647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2017 Feb 7;17(1):47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28173747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Sep;145(1):174-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17631526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Mol Biol. 2010 Mar;19 Suppl 2:249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20482655</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Collens, Adena" sort="Collens, Adena" uniqKey="Collens A" first="Adena" last="Collens">Adena Collens</name>
</region>
<name sortKey="Katz, Laura A" sort="Katz, Laura A" uniqKey="Katz L" first="Laura A" last="Katz">Laura A. Katz</name>
<name sortKey="Katz, Laura A" sort="Katz, Laura A" uniqKey="Katz L" first="Laura A" last="Katz">Laura A. Katz</name>
<name sortKey="Kelley, Emma" sort="Kelley, Emma" uniqKey="Kelley E" first="Emma" last="Kelley">Emma Kelley</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000055 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000055 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31709760
   |texte=   The concept of the hologenome, an epigenetic phenomenon, challenges aspects of the modern evolutionary synthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31709760" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020